Knowledge Center search search close
Collection of videos, reference examples, and more to support your real-time simulation and testing workflows

Content


Real-Time Simulation and Testing with Simulink Real-Time and Speedgoat Hardware

Real-Time Simulation and Testing with Simulink Real-Time and Speedgoat Hardware

Speedgoat real-time solutions and Simulink® are expressly designed to work together for creating real-time systems for desktop, lab, and field environments.

Workflow Introductions

Hardware-in-the-Loop

Rapid Control Prototyping

Hardware-in-the-Loop Simulation

Hardware-in-the-Loop Simulation

Effectively Test Controls with Real-Time Digital Twins and Automated Testing.

Workflow Introductions

Hardware-in-the-Loop

Industry Use Cases

Rapid Control Prototyping

Rapid Control Prototyping

Accelerate Control Design Innovation With Model-Based Design Ready Solutions for a Worry-Free Test and Simulation Experience.

Workflow Introductions

Rapid Control Prototyping

Industry Use Cases

Simscape Vehicle Templates

Simscape Vehicle Templates

Run custom Simscape Vehicle Models in Real-Time

Reference Examples

Hardware-in-the-Loop

Introduction to Speedgoat Simulink-Programmable FPGAs

Introduction to Speedgoat Simulink-Programmable FPGAs

Learn about the Simulink-integrated workflows to program FPGA I/O modules easily and directly from your model.

Workflow Introductions

Hardware-in-the-Loop

Rapid Control Prototyping

Real-Time Driver-in-the-Loop Reference Example

Real-Time Driver-in-the-Loop Reference Example

Learn how to create and run real-time virtual vehicles and Driver-in-the-Loop simulators to safely test and validate your new designs.

Reference Examples

Hardware-in-the-Loop

Rapid Control Prototyping

Lane Detection on FPGA Reference Example

Lane Detection on FPGA Reference Example

Learn how to perform hardware-accelerated vision processing for driver assistance and automated driving systems by implementing real-time lane detection.

Reference Examples

Hardware-in-the-Loop

Real-Time Lane Keeping Assist

Real-Time Lane Keeping Assist

Prove and test your model predictive lane following controller using real-time virtual vehicle simulation with raw synthetic camera data.

Reference Examples

Rapid Control Prototyping

 Rapid Control Prototyping for Power Electronics Control Design

Rapid Control Prototyping for Power Electronics Control Design

This recorded webinar shows how power electronics control engineers can use rapid control prototyping (RCP) with Simulink Real-Time™ and Speedgoat real-time target machines to validate Simulink® algorithms against electric motor and power converter prototype systems.

Recorded Webinars

Rapid Control Prototyping

Hardware-in-the-Loop Testing of Control Algorithms for Modular Multi-Level Converters

Hardware-in-the-Loop Testing of Control Algorithms for Modular Multi-Level Converters

Learn how to use Simulink®, Simscape Electrical™, and Model-Based Design to develop and test the embedded software that controls a multi-level power converter and improve your knowledge of simulating power electronics control systems or wants an introduction to code generation from Simulink models.

Recorded Webinars

Hardware-in-the-Loop

Accelerate Development of Power Systems with Real-Time Testing

Accelerate Development of Power Systems with Real-Time Testing

This webinar will present how real-time solutions are being used to accelerate electric power generation, renewable energy integration, and onboard systems development. It highlights how Speedgoat real-time solutions enable electrical and control engineers to develop, test, and validate their innovations with hardware prototypes.

Recorded Webinars

Hardware-in-the-Loop

Rapid Control Prototyping

HIL and Automated Testing Applications for Aerospace

HIL and Automated Testing Applications for Aerospace

This recorded webinar presents how hardware-in-the-loop (HIL) testing is used to develop, test, and validate new aircraft components or systems such as controllers for aileron actuators. 

Recorded Webinars

Hardware-in-the-Loop

Advancing Electrification with Real-Time Testing

Advancing Electrification with Real-Time Testing

This recorded webinar presents how you can leverage real-time solutions to accelerate renewable energy integration and electric vehicle developments.

Recorded Webinars

Rapid Control Prototyping

Independent Generation of Sequence Elements by Motor Cortex

Independent Generation of Sequence Elements by Motor Cortex

Rapid execution of motor sequences depends on fusing movement elements into cohesive units that are executed holistically. The contribution of the primary motor and dorsal premotor cortex to this ability is determined in this paper. Also, the hypothesis that movement elements fuse makes specific predictions regarding three forms of activity, preparation, initiation, and execution is investigated.

Publication on nature.com

Published Papers

Developing and Testing Next Generation Control Systems

Developing and Testing Next Generation Control Systems

Learn how Speedgoat enables you to prototype and test complex control algorithms using full-vehicle simulation. By building a virtual environment for safe and realistic testing and verification, you can reduce prototype testing costs.

Recorded Webinars

Hardware-in-the-Loop

Rapid Control Prototyping

Hardware-in-the-Loop (HIL) Testing of an Electric Motor Controller

Hardware-in-the-Loop (HIL) Testing of an Electric Motor Controller

This webinar demonstrates Hardware-in-the-Loop (HIL) testing of a controller for a 3-phase inverter and permanent magnetic synchronous motor (PMSM). Learn how to run a motor and inverter model in real-time using Simulink Real-Time and a Speedgoat Real-Time Target Machine. Learn how to configure your model for real-time testing, control your HIL application from within Simulink, create and manage test scenarios, verify and validate functional requirements, generate test reports, and automate your regression tests in the context of Continuous Integration.

Hardware-in-the-Loop

Recorded Webinars

Real-Time Simulation and Control of High-Performance All-Electric Autonomous Racing Cars

Real-Time Simulation and Control of High-Performance All-Electric Autonomous Racing Cars

Discover the full autonomous software stack from Technical University of Munich’s Roborace team. Designed with Simulink and ready to run on Speedgoat.

Reference Examples

Hardware-in-the-Loop

Rapid Control Prototyping

Using Simulink to Develop Grid-Tied Solar Inverter Controls

Using Simulink to Develop Grid-Tied Solar Inverter Controls

Learn how you can design, implement, and test the controller code for a 3-phase grid-tied solar inverter using Simulink.  Learn how you can develop a controller that can adhere to grid codes and maintain inverter grid connection during upset conditions.

Hardware-in-the-Loop

Recorded Webinars

FPGA-Based HIL Testing of Grid-Side Converters

FPGA-Based HIL Testing of Grid-Side Converters

Use an integrated workflow to test grid-side converters safely without requiring physical prototypes.

Reference Examples

Hardware-in-the-Loop

Current Control and FPGA-Based Real-Time Simulation of Grid-Tied Inverters

Current Control and FPGA-Based Real-Time Simulation of Grid-Tied Inverters

Learn how to synthesize a controller for a grid-side converter using observer-based linear quadratic regulator (LQR) and how to perform hardware-in-the-loop testing of grid-tied inverter using Simulink and Speedgoat hardware.

Recorded Webinars

Hardware-in-the-Loop

Real-Time Simulation and Testing: Hardware-in-the-Loop

Real-Time Simulation and Testing: Hardware-in-the-Loop

Hardware-in-the-Loop (HIL) Simulation and Testing with Simulink Real-TimeTM and Speedgoat target computers.

Recorded Webinars

Hardware-in-the-Loop

Continental: Accelerated Development Using Rapid Control Prototyping

Continental: Accelerated Development Using Rapid Control Prototyping

This project shows a solution whereby engineers can quickly move from SIL to HIL using a Speedgoat system with programmable FPGA technology instead of an original ECU. 

Recorded Webinars

Hardware-in-the-Loop

CPU, FPGA, and I/O Solutions for Real-Time Simulation and Testing with Simulink

CPU, FPGA, and I/O Solutions for Real-Time Simulation and Testing with Simulink

In this webinar, MathWorks together with Speedgoat will showcase how to perform real-time simulation and testing, enabling you to rapidly and continuously test and prove your designs, from desktop simulation to testing your designs in real time on hardware platforms.

Recorded Webinars

Hardware-in-the-Loop

Rapid Control Prototyping

A Self-Tuning Robust Control System for Nonlinear Simulation

A Self-Tuning Robust Control System for Nonlinear Simulation

A transfer system is used to enforce the interface interaction between computational and physical substructures in a real-time hybrid simulation. A model-based, multilayer nonlinear control system is developed to accommodate extensive performance variations and uncertainties in a physical substructure. This work aims to extend the application of real-time simulation to investigating failure, nonlinearity, and nonstationary behavior. 

Publication on wiley.com

Published Papers

Leading-Edge Vortex and Transient Lift on a Revolving Wing at Low Reynolds Numbers

Leading-Edge Vortex and Transient Lift on a Revolving Wing at Low Reynolds Numbers

The transient formation and the stable attachment of the leading-edge vortex (LEV) contribute to the high lift generation of an insect wing when it revolves at high angles of attack. This study examined the leading-edge vortex (LEV) formation and the transient lift generation on a revolving wing, using combined computational and experimental methods.

Publication on sciencedirect.com

Published Papers

Follow Speedgoat LinkedIn