Knowledge Center search search close
Collection of videos, reference examples, and more to support your real-time simulation and testing workflows

Content


Consumer Electronics Solutions

Consumer Electronics Solutions

Expedite R&D innovation by replacing constraining embedded controls, DSP, and vision hardware with modular and Simulink-enabled real-time systems, enabling rapid verification and validation of novel ideas and simulation of digital twins for test automation
Request free workflow demo.

Industry Use Cases

Rapid Control Prototyping

Hardware-in-the-Loop

Power Systems Industry Solutions

Power Systems Industry Solutions

Design, simulate, and test power system controls and large electrical networks.

Industry Use Cases

Rapid Control Prototyping

Hardware-in-the-Loop

Power Electronics Solutions

Power Electronics Solutions

Design, test, and validate digital controls for electric motors, power converters, and battery management systems.

Industry Use Cases

Rapid Control Prototyping

Hardware-in-the-Loop

Civil Engineering Industry Solutions

Civil Engineering Industry Solutions

Ever increasing complexity of buildings, transportation networks, natural resource, and energy supply systems require progressive monitoring and control systems for safe and long-lasting operation.

Industry Use Cases

Hardware-in-the-Loop

Rapid Control Prototyping

Railway Industry Solutions

Railway Industry Solutions

Simulate complete diesel, electrical, and hybrid locomotives to accelerate the development of next-generation railway controls and communication systems.

Industry Use Cases

Rapid Control Prototyping

Hardware-in-the-Loop

Applied Physics Solutions

Applied Physics Solutions

Expedite the Path to Scientific Breakthroughs for the Most Complex and Challenging Problems

Industry Use Cases

Rapid Control Prototyping

Hardware-in-the-Loop

Marine Industry Solutions

Marine Industry Solutions

The future of marine technology is electric. Fast prototyping of Engine Control Units (ECU) and robust testing of onboard microgrids is gaining importance.

Industry Use Cases

Rapid Control Prototyping

Hardware-in-the-Loop

Classroom & Lab Solutions

Classroom & Lab Solutions

Real-time simulation in the classroom is a new way to inspire students and pivotal in shaping future engineers. Speedgoat's generous academic discount pricing, help academic institutions profit from our real-time solutions.

Hardware-in-the-Loop

Rapid Control Prototyping

Industry Use Cases

Speedgoat Collaboration Programs

Speedgoat Collaboration Programs

Speedgoat supports students in science and engineering competitions across the globe, as well as professors and researchers throughout their projects, with curated training and consulting services.

Rapid Control Prototyping

Hardware-in-the-Loop

Industry Use Cases

Update Target Operating System to R2020b and Later

Update Target Operating System to R2020b and Later

Simulink Real-Time R2020b and later releases ship with a QNX-based 64-bit real-time operating system (RTOS). Learn how to update the software of your existing Speedgoat real-time target machine running on R2020a or earlier.

How To

Part 1: System Configuration of Host PC (R2020a and earlier)

Part 1: System Configuration of Host PC (R2020a and earlier)

Learn how to set up the host computer for smooth operation, test the host-target communication and troubleshoot basic installation issues.

How To

Part 2: Configuration of Target Machine (R2020a and earlier)

Part 2: Configuration of Target Machine (R2020a and earlier)

Understand the operating principles of real-time target machines, learn how to configure your target machine and create and transfer a Simulink Real-Time™ kernel.

How To

Part 3: Running Real-Time Applications (R2020a and earlier)

Part 3: Running Real-Time Applications (R2020a and earlier)

Video tutorial series part 3: Understand the main principles of real-time simulation. Configure and prepare Simulink® models for real-time execution. Deploy Simulink® models as real-time applications onto Speedgoat target machines.

How To

Part 4: Data Logging (R2020a and earlier)

Part 4: Data Logging (R2020a and earlier)

Monitor, visualize, and log signals using the Simulation Data. Inspector (SDI) on the development computer. Write data to the disk of the target machine using “File Scope” blocks.

How To

Part 5: Control and Instrumentation (R2020a and earlier)

Part 5: Control and Instrumentation (R2020a and earlier)

Learn how to use a Simulink® model as a direct user interface to the real-time application. Tune parameters using MATLAB command lines to control the execution of the real-time application. Create custom user interfaces using MATLAB App Designer.

How To

Part 1: System Configuration of Host PC (R2020b and later)

Part 1: System Configuration of Host PC (R2020b and later)

Learn how to set up the host computer for smooth operation, test the host-target communication and troubleshoot basic installation issues.

How To

Part 2: Configuration of Target Machine (R2020b and later)

Part 2: Configuration of Target Machine (R2020b and later)

Understand the operating principles of real-time target machines, learn how to configure your target machine and create and transfer a Simulink Real-Time™ kernel.

How To

Part 3: Running Real-Time Applications (R2020b and later)

Part 3: Running Real-Time Applications (R2020b and later)

Understand the main principles of real-time simulation. Configure and prepare Simulink® models for real-time execution. Deploy Simulink® models as real-time applications onto Speedgoat target machines.

How To

Part 4: Data Logging (R2020b and later)

Part 4: Data Logging (R2020b and later)

Monitor, visualize, and log signals using the Simulation Data. Inspector (SDI) on the development computer. Write data to the disk of the target machine using “File Scope” blocks.

How To

Part 5: Control and Instrumentation (R2020b and later)

Part 5: Control and Instrumentation (R2020b and later)

Learn how to use a Simulink® model as a direct user interface to the real-time application. Tune parameters using MATLAB command lines to control the execution of the real-time application. Create custom user interfaces using MATLAB App Designer.

How To

Research Solutions

Research Solutions

Leading companies use Rapid Control Prototyping (RCP) and Hardware-in-the-Loop (HIL) for faster product development. The flexible and scalable real-time simulation solutions enable you to make your research project successful.

Hardware-in-the-Loop

Rapid Control Prototyping

Industry Use Cases

Chassis & Vehicle Dynamics

Chassis & Vehicle Dynamics

Develop new control strategies for chassis, steering, and braking (conventional and x-by-wire), suspension (including semi-active and active), and ride comfort systems.

Industry Use Cases

Rapid Control Prototyping

Hardware-in-the-Loop

Infotainment & Multimedia Systems

Infotainment & Multimedia Systems

Validate the various infotainment and multimedia system including instrument clusters, navigation systems, or the vehicle audio systems.

Industry Use Cases

Rapid Control Prototyping

Hardware-in-the-Loop

Automated Driving (AD) and Advanced Driver Assistance Systems (ADAS)

Automated Driving (AD) and Advanced Driver Assistance Systems (ADAS)

Design perception, planning, and control algorithms for all levels of driving automation.

Industry Use Cases

Rapid Control Prototyping

Hardware-in-the-Loop

Cabin, Body, and Comfort

Cabin, Body, and Comfort

Test the various components and regarding ECUs for access control, lighting, HVAC, electronic windows, seat control and more.

Industry Use Cases

Rapid Control Prototyping

Hardware-in-the-Loop

Follow Speedgoat LinkedIn