Knowledge Center search search close
Collection of videos, reference examples, and more to support your real-time simulation and testing workflows

Content


Building Real-Time Driver-in-the-Loop Simulators

Building Real-Time Driver-in-the-Loop Simulators

Learn how to use Vehicle Dynamics Blockset™ and the Unreal Engine interface to visualize driving scenarios. Use Speedgoat test system with Simulink Real-Time to create a real-time simulator. Set up a driving simulator with pedal and steering wheel hardware to perform driver-in-the loop testing

Hardware-in-the-Loop

Videos

Recorded Webinars

Minimum Curvature Trajectory Planning and Control for an Autonomous Race Car

Minimum Curvature Trajectory Planning and Control for an Autonomous Race Car

This paper shows a software stack capable of planning a minimum curvature trajectory for an autonomous race car based on an occupancy grid map. It introduces a controller design that allows following the trajectory at the handling limits. The the quadratic optimization problem is extended  for improved accuracy, the introduction of curvature constraints, and the reduction of linearization errors in corners.

Publication on tandfonline.com

Published Papers

Systematic Design of Multivariable Fuel Injection Controllers for Advanced Diesel Combustion

Systematic Design of Multivariable Fuel Injection Controllers for Advanced Diesel Combustion

With multiple fuel injections per combustion cycle, the advanced diesel combustion process depends on all injection pulses in a coupled way. This work describes the cycle-to-cycle fuel injection control problem. A control-oriented model is introduced and locally validated with experimental data. Finally, a systematic design approach is proposed to synthesize a multivariable fuel injection controller.

Publication on ieeexplore.ieee.org

Published Papers

Control for a Supercapacitor Hybrid Energy Storage System Used in Electric Vehicles

Control for a Supercapacitor Hybrid Energy Storage System Used in Electric Vehicles

This paper proposes the control strategy of a fully active hybrid energy storage system, which uses two bi-directional DC/DC converters to decouple supercapacitors and the battery pack from the DC bus. A Lyapunov-function-based controller regulates DC bus voltage, and a sliding mode controller, controlling the battery and supercapacitor currents, is designed. Their performance is validated by simulation and experimental data. 

Publication on sciencedirect.com

Published Papers

Rapid Control Prototyping for Permanent Magnet Synchronous Motor (PMSM) Control

Rapid Control Prototyping for Permanent Magnet Synchronous Motor (PMSM) Control

Power Electronics and Motor Control Prototyping on CPU/FPGA Target Hardware with Simulink Real-TimeTM.

Recorded Webinars

Rapid Control Prototyping

Follow Speedgoat LinkedIn