Knowledge Center search search close

Quick Access            Documentation    |    Recorded Webinars    |    Introduction Videos 

Collection of videos, reference applications, and more to support your real-time simulation and testing workflows

Content


Aerospace Industry Solutions

Aerospace Industry Solutions

Realize your Innovation - The need to increase reliability while reducing risk in Aerospace requires new, yet well-proven solutions for prototyping and testing.

Industry Use Cases

Rapid Control Prototyping

Hardware-in-the-Loop

Electric Motor Control Reference Application

Electric Motor Control Reference Application

Design, prototype, and test your brushless DC motor controls using Simulink and Speedgoat hardware

Reference Applications

Rapid Control Prototyping

Hardware-in-the-Loop

Real-Time Simulation and Testing with Simulink Real-Time and Speedgoat Hardware

Real-Time Simulation and Testing with Simulink Real-Time and Speedgoat Hardware

Speedgoat real-time solutions and Simulink® are expressly designed to work together for creating real-time systems for desktop, lab, and field environments.

Workflow Introductions

Hardware-in-the-Loop

Rapid Control Prototyping

Hardware-in-the-Loop Simulation

Hardware-in-the-Loop Simulation

Effectively Test Controls with Real-Time Digital Twins and Automated Testing.

Workflow Introductions

Hardware-in-the-Loop

Industry Use Cases

Rapid Control Prototyping

Rapid Control Prototyping

Accelerate Control Design Innovation With Model-Based Design Ready Solutions for a Worry-Free Test and Simulation Experience.

Workflow Introductions

Rapid Control Prototyping

Industry Use Cases

Introduction to Speedgoat FPGA Technology

Introduction to Speedgoat FPGA Technology

Learn about the Simulink-integrated workflows to configure and program FPGA I/O modules easily and directly from your model.

Workflow Introductions

Hardware-in-the-Loop

Rapid Control Prototyping

FPGA-based rapid control prototyping of permanent magnet synchronous motor servo drives

FPGA-based rapid control prototyping of permanent magnet synchronous motor servo drives

Due to tight time constraints and unknown disturbances, the position control problem in permanent magnet synchronous machine (PMSM) drives remains exceedingly challenging. Download this technical article to learn more about experimental validation of a cascade control structure for position control in PMSM drives.

Whitepapers

Speed Up Digital Control Development for Motors, Power Converters, and Battery Systems with Simulink

Speed Up Digital Control Development for Motors, Power Converters, and Battery Systems with Simulink

Digital control design for power electronics using Simulink® makes it easy to try new ideas, test them, and go to hardware without coding. You can use system-level models for desktop simulation, real-time simulation, and production code generation, speeding up designing and testing your power electronics control systems.

Whitepapers

10 Ways to Speed Design for Digitally Controlled Power Converters with Simulink

10 Ways to Speed Design for Digitally Controlled Power Converters with Simulink

This whitepaper highlights ways to accelerate digital control development for power converters with system-level simulation, how to validate control code on the processor without damaging electrical system hardware and developing real-time simulations of your electrical system.

Hardware-in-the-Loop

Rapid Control Prototyping

Whitepapers

Aalto University

Aalto University

Students' mission to get Finland's first satellite into orbit.

Success Stories

Hardware-in-the-Loop

Scientific Aviation Association

Scientific Aviation Association

Find out how students at the Scientific Aviation Association are using a Baseline real-time target machine to accelerate their hybrid powertrain testing and certification process.

Success Stories

Rapid Control Prototyping

Automated and Continuous Hardware-in-the-Loop Testing

Automated and Continuous Hardware-in-the-Loop Testing

Learn about hardware-in-the-loop (HIL) testing and how to efficiently test controls using Speedgoat and MathWorks’ unified HIL solution.

Recorded Webinars

Hardware-in-the-Loop

Electrification Testing and Certification Workflows in Aerospace

Electrification Testing and Certification Workflows in Aerospace

This webinar shows how hardware-in-the-loop testing accelerates testing and certification of more electric or vertical take-off and landing (VTOL) aircrafts.

Recorded Webinars

Hardware-in-the-Loop

Battery Management System Integration into an Electronic Control Module for a Hybrid Electric Aircraft

Battery Management System Integration into an Electronic Control Module for a Hybrid Electric Aircraft

Th­is article focuses on BMS integration into the electronic control module (ECM) of the FVA 30 hybrid electric motor glider using a Speedgoat real-time target machine. The challenge is to design an ECM for reliable data processing, allowing pilots to monitor and control the drivetrain.

Published Papers

Rapid Control Prototyping

Certification Process for a Hybrid Electric Aircraft

Certification Process for a Hybrid Electric Aircraft

The scientific aviation association (FVA) is developing the FVA 30, a hybrid electric motor glider, to research alternative propulsion systems. This article focuses on the certification process of the FVA 30 power train, using a Speedgoat target computer.

Hardware-in-the-Loop

Published Papers

Developing and Testing Control Systems with MATLAB and Simulink

Developing and Testing Control Systems with MATLAB and Simulink

The webinar explains you an engaging learning experience by exposing you to a broad set of real-life testing scenarios, including real-time interactions with digital twin simulators and physical systems, such as motion sensors, electric motors, and robot manipulators.

Rapid Control Prototyping

Hardware-in-the-Loop

Recorded Webinars

Computer Vision

Computer Vision

Rapidly build, run, and test video acquisition and control applications with a Speedgoat real-time target machine. There is a wide range of applications from the design of phone cameras to autonomous vehicle systems.

Rapid Control Prototyping

Hardware-in-the-Loop

Industry Use Cases

Audio

Audio

Highly controlled manipulations are required e.g. for hearing aids, noise cancelling headphones, or car acoustics. Speedgoat real-time systems provide high performance, high-resolution analog and digital I/O, together with MATLAB & Simulink.

Rapid Control Prototyping

Hardware-in-the-Loop

Industry Use Cases

Structural Test

Structural Test

Use the Speedgoat system for fast acquisition and monitoring of signal data and for closed control loops. For example, for active anti-damping systems for bridges and buildings, for simulating environmental scenarios such as earthquakes, or for vibration platforms in the automotive and aerospace industries.

Rapid Control Prototyping

Hardware-in-the-Loop

Industry Use Cases

Embedded

Embedded

Leverage real-time target machines for use as embedded controllers.

Rapid Control Prototyping

Industry Use Cases

Power Hardware-in-the-Loop

Power Hardware-in-the-Loop

Speedgoat provides a wide range of real-time P-HIL solutions to test and verify power electronics and power system components. Utilize complex physical models designed with MathWorks tools on multi-core CPUs and FPGAs with the highest level of performance.

Hardware-in-the-Loop

Industry Use Cases

UAV Modeling and Testing

UAV Modeling and Testing

Create a real-time virtual testing environment to safely test new designs early in the development and avoid expensive reruns of flight campaigns and reduce downtime in the field.

Industry Use Cases

Hardware-in-the-Loop

Rapid Control Prototyping

Vorticity Dynamics of Leading-Edge Vortex Formation on a Revolving Wing

Vorticity Dynamics of Leading-Edge Vortex Formation on a Revolving Wing

A leading-edge vortex (LEV) forms and remains stably attached on high angle-of-attack (AoA), low aspect ratio (AR) wings undergoing revolving or flapping motion at an insect’s wing. Here, the LEV formation on a revolving wing is investigated. The 'Shake-the-box' (STB) Lagrangian particle tracking velocimetry (PTV) system and a volumetric patching process helped reconstruct the entire time-resolved flow field.

Publication on springer.com

Published Papers

HIL of Battery Management Systems

HIL of Battery Management Systems

Verify, validate, and test battery management system (BMS) controllers and hardware components using hardware-in-the-loop testing (HIL) and battery cell emulators.

Industry Use Cases

Hardware-in-the-Loop

Flight Controller and Autoflight Systems

Flight Controller and Autoflight Systems

Develop and test your flight controller or complete auto-flight system with the MathWorks Aerospace Toolbox and Speedgoat systems to simulate conditions for every flight scenario.

Industry Use Cases

Hardware-in-the-Loop

Rapid Control Prototyping

Follow Speedgoat LinkedIn