Knowledge Center search search close
Collection of videos, reference examples, and more to support your real-time simulation and testing workflows

Content


Real-Time Simulation and Testing with Simulink Real-Time and Speedgoat Hardware

Real-Time Simulation and Testing with Simulink Real-Time and Speedgoat Hardware

Speedgoat real-time solutions and Simulink® are expressly designed to work together for creating real-time systems for desktop, lab, and field environments.

Workflow Introductions

Hardware-in-the-Loop

Rapid Control Prototyping

Hardware-in-the-Loop Simulation

Hardware-in-the-Loop Simulation

Effectively Test Controls with Real-Time Digital Twins and Automated Testing.

Workflow Introductions

Hardware-in-the-Loop

Industry Use Cases

Rapid Control Prototyping

Rapid Control Prototyping

Accelerate Control Design Innovation With Model-Based Design Ready Solutions for a Worry-Free Test and Simulation Experience.

Workflow Introductions

Rapid Control Prototyping

Industry Use Cases

Introduction to Speedgoat Simulink-Programmable FPGAs

Introduction to Speedgoat Simulink-Programmable FPGAs

Learn about the Simulink-integrated workflows to program FPGA I/O modules easily and directly from your model.

Workflow Introductions

Hardware-in-the-Loop

Rapid Control Prototyping

Speedgoat Configurable I/O Modules

Speedgoat Configurable I/O Modules

Learn about the Simulink-integrated workflows to configure I/O modules easily and directly from your model.

Workflow Introductions

Hardware-in-the-Loop

Rapid Control Prototyping

Modeling and Analysis of Medium Frequency Transformers for Power Converters

Modeling and Analysis of Medium Frequency Transformers for Power Converters

A mathematical model of a 3-phase medium frequency transformer (MFT) in an isolated DC-DC power converter, suitable for electromagnetic transient and steady-state simulation is developed. The transformer modeling methods are reviewed, and the Lagrange energy method is used to derive a physically motivated model for circuit analysis.

Publication on edu.pl

Published Papers

Motion Planning and Experimental Validation for an Autonomous Bicycle

Motion Planning and Experimental Validation for an Autonomous Bicycle

This paper introduces a prototype autonomous two-wheeled vehicle developed for experimental verification of motion planning and control algorithms. Finally, it presents and discusses experiments run on the actual vehicle for a particular maneuver. It emphasizes the differences between the trajectories created by different vehicle models.

Publication on ieeexplore.ieee.org

Published Papers

Rapid Control Prototyping

A Balanced Hybrid Active-Passive Actuation Approach for High-Performance Haptics

A Balanced Hybrid Active-Passive Actuation Approach for High-Performance Haptics

This paper describes the design of a high-performance balanced hybrid haptic device. The actuation, design, and control approaches are described and experimentally validated. The results show significant improvements in the stability and rendering range of the device. 

Publication on ieeexplore.ieee.org

Published Papers

Rapid Control Prototyping

A Lightweight Force-Controllable Wearable Arm Based on Magnetorheological-Hydrostatic Actuators

A Lightweight Force-Controllable Wearable Arm Based on Magnetorheological-Hydrostatic Actuators

This paper studies the feasibility of using magnetorheological (MR) clutches coupled to a low-friction hydrostatic transmission.  This combination provides a highly effective yet lightweight, force-controllable supernumerary robotic arm (SRL). Experimental studies conducted on a one-DOF test bench and validated analytically demonstrate a high force bandwidth (>25 Hz) and an excellent ability to control interaction forces even when interacting with an external impedance.

Publication on ieeexplore.ieee.org

Published Papers

Rapid Control Prototyping

Active Magnetic Bearing for Ultra-Precision Flexible Electronics Production System

Active Magnetic Bearing for Ultra-Precision Flexible Electronics Production System

Roll-to-roll printing of flexible electronics on continuous plastic films could enable the production of flexible electronics at high speed and low cost. However, rolling element bearings cannot be deployed because of the precision requirements. Instead, active magnetic bearings (AMB) with optical positioning encoder feedback are used.

Publication on lib.cranfield.ac.uk

Published Papers

Follow Speedgoat LinkedIn