Knowledge Center search search close
Collection of videos, reference examples, and more to support your real-time simulation and testing workflows

Content


A Lightweight Force-Controllable Wearable Arm Based on Magnetorheological-Hydrostatic Actuators

A Lightweight Force-Controllable Wearable Arm Based on Magnetorheological-Hydrostatic Actuators

This paper studies the feasibility of using magnetorheological (MR) clutches coupled to a low-friction hydrostatic transmission.  This combination provides a highly effective yet lightweight, force-controllable supernumerary robotic arm (SRL). Experimental studies conducted on a one-DOF test bench and validated analytically demonstrate a high force bandwidth (>25 Hz) and an excellent ability to control interaction forces even when interacting with an external impedance.

Publication on ieeexplore.ieee.org

Published Papers

Rapid Control Prototyping

Topological Analog Signal Processing

Topological Analog Signal Processing

Researchers at the Swiss Federal Institute of Technology in Lausanne (EPFL) used a Speedgoat Performance real-time target machine and a high-speed analog IO131 module to validate an acoustic topological equation solver experimentally. The setup allowed them to demonstrate the robustness of analog signal processors (ASP) and is an essential step towards a new generation of ultrafast all-optical ASPs. 

Publication on nature.com

Published Papers

Rapid Control Prototyping

An Intelligent Controller based Power Grid Interconnected System for Reliable Operation

An Intelligent Controller based Power Grid Interconnected System for Reliable Operation

The main objective of the research presented is to control the unidirectional boost converter (UBC) by implementing an intelligent controller (IC). The IC continuously captures power conversion based on power output data from wind and solar energy. Then, it injects gate pulses into a power electronic switch based on the data value. The overall design and simulations are performed using MATLAB/SIMULINK.

Publication on ieeexplore.ieee.org

Rapid Control Prototyping

Published Papers

Robust and Reliable Wireless Communication between Smart NOx Sensor and the Speedgoat Engine Control Module

Robust and Reliable Wireless Communication between Smart NOx Sensor and the Speedgoat Engine Control Module

The smart NOx sensor case study investigates the possibility of replacing existing wired CAN bus connections between the smart NOx sensor and the Speedgoat rapid control prototyping system and possible future wireless communication with ECU. In addition, criteria like the transmission in industrial environments, packet loss, RSSI, bit error rate, reliability, and security of the wireless solution are analyzed.

Publication on osuva.uwasa.fi

Published Papers

Rapid Control Prototyping

Robust Switching Control Method to Achieve Tokamak-Shaped Plasma

Robust Switching Control Method to Achieve Tokamak-Shaped Plasma

A robust switching control method with state vector matching and a novel approach for the feedback system simulation are presented in this paper. First, the plant model reconstructs plasma equilibria from experimental data and calculates plasma shape changes. Then, the control system is discretized and run on a high-speed computer for experiments on a real-time testbed.

Publication on sciencedirect.com

Published Papers

Rapid Control Prototyping

Rapid Control Prototyping Tool for the Sirius High-Dynamic DCM Control System

Rapid Control Prototyping Tool for the Sirius High-Dynamic DCM Control System

The monochromator is known to be one of the most critical optical elements of a synchrotron beamline. A Simulink implementation running on a Speedgoat Performance real-time target machine identifies and ensures controlling the dynamic behavior of all subcomponents in the prototype. In addition, this approach enables rapid prototyping by allowing a shared environment for system modeling and testing.

Publication on inspirehep.net

Published Papers

Rapid Control Prototyping

Mechatronic Architecture Development of UX-1

Mechatronic Architecture Development of UX-1

This paper presents a novel design of an underwater robot for exploring abandoned mines. Rapid prototyping of controllers during the development phase of the robot is described, and the mechatronic development of the main controller unit, propulsion system, and ballast is investigated. The robot's mechatronic architecture and the low-level control algorithms demonstrate its potential for performing real-time operations.

Publication on ieeexplore.ieee.org

Published Papers

Rapid Control Prototyping

Drag Reduction in Turbulent Boundary Layer via Real-Time Control

Drag Reduction in Turbulent Boundary Layer via Real-Time Control

This paper demonstrates an approach to real-time control of large-scale structures. Real-time controls reduce the streamwise turbulence intensity as well as skin-friction drag.

Publication on sciencedirect.com

Published Papers

Rapid Control Prototyping

Design and Implementation of Bi-Directional DC-DC Converter for Wind Energy System

Design and Implementation of Bi-Directional DC-DC Converter for Wind Energy System

This paper features designing and implementing a bi-directional DC-DC converter with a Speedgoat controller for wind energy conversion systems. An energy storage device is used to compensate for the fluctuations and to maintain a smooth and continuous power flow in all operating modes to load. The complete system is implemented in MATLAB/SIMULINK and verified with hardware.

Publication on scirp.org

Published Papers

Rapid Control Prototyping

Rapid Control Prototyping for Permanent Magnet Synchronous Motor (PMSM) Control

Rapid Control Prototyping for Permanent Magnet Synchronous Motor (PMSM) Control

Power Electronics and Motor Control Prototyping on CPU/FPGA Target Hardware with Simulink Real-TimeTM.

Recorded Webinars

Rapid Control Prototyping

Follow Speedgoat LinkedIn